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Abstract: Baseflow is influenced by incoming groundwater to aquifers and is closely related
to watershed characteristics. Understanding baseflow characteristics is of great importance to
river ecosystems and water management. Baseflow estimation typically depends on the observed
streamflow in gauged watersheds, but accurate predictions of streamflow through modeling can also
be useful in estimating baseflow. However, uncertainty occurs in the baseflow estimation process
when modeling streamflow. Therefore, the purpose of this study is to compare the method that
is proposed by Arnold and Allen (Scenario I) to an improved recession prediction method where
the alpha factor (baseflow recession coefficient) is recalibrated and is applied to SWAT (Scenario II).
Although the differences between the results (NSE, R2, RMSE, MAE, d) of Scenarios I and II were small
regarding streamflow and recession, the Scenario II method more accurately reflected the recession
characteristics than the Scenario I method. Furthermore, the Scenario II method was better in baseflow
prediction than for the Scenario I method proposed by Arnold and Allen. Therefore, these outputs
pave the way and contribute to an efficient method for water management in watersheds.
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1. Introduction

Baseflow is the portion of streamflow that is delayed subsurface flow and generally maintained
by groundwater discharge. Regardless of the specific climatic environment, its main features are
tightly related to geological catchment properties [1–4]. Baseflow is the streamflow that constitutes
the majority of the streamflow on a day when rain does not occur or has not occurred recently [5].
Understanding the baseflow process is important to deal with various water resources issues, such
as water resources management strategies, low flow conditions assessment, hydrological modeling
calibration, and water quality studies [6].

However, no direct approach exists for continuously measuring the variability of streamflow
recession under different conditions and the corresponding baseflow, because the baseflow is
usually affected by diverse climatological and geological factors, with considerable variations in
spatio-temporality [7,8]. Therefore, many efforts have been developed for analyzing baseflow
characteristics [9–11]. For example, the baseflow recession curve method [12] and the groundwater
topology curve method [13] have been used as analysis methods, and software for separating baseflow
and the direct runoff from streamflow has been developed [14,15]. Understanding the role of baseflow
in streamflow processes is critical for the identification and quantification of groundwater storage and
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direct runoff [16]. For this reason, many studies associated with the analyses of the characteristics of
baseflow in watersheds have been conducted using various methods: the recession curve displacement
method [17], the curve-fitting method [18], and the water-table fluctuation method [19]. In addition,
HYSEP (Hydrograph Separation Program) [20], PART, RORA [21], BFlow [22,23], and WHAT
(Web-based Hydrograph Analysis Tool) [24,25] have been developed and widely employed for
hydrograph analysis on a long-term basis.

The Bflow program, which uses a digital filtering method [26], was developed and commonly
used to provide consistent baseflow separation results. An important role of the Bflow program is to
calculate an alpha factor, which is a parameter that is related to groundwater recharge and baseflow
changes in a watershed. The alpha factor is a direct index of baseflow response to change in recharge
of the shallow aquifer. Brutsaert and Nieber [27] reported that the recession parameter ‘alpha factor’ is
a function of physical watershed characteristics, including hydraulic conductivity.

It can affect the shape of streamflow hydrographs, as it is a sensitive parameter [28]. The alpha
factor can be derived using the Bflow program reflecting the recession characteristics and used
to separate the direct runoff and the baseflow from the predicted streamflow and then used in
hydrological models, such as Soil and Water Assessment Tool (SWAT). Various hydrological models
can be used to predict streamflow at watershed scales. The SWAT model has been widely used in
many environmental, hydrological applications around the world [29–31]. SWAT can quantify changes
in hydrologic responses, such as runoff, water quality, groundwater recharge, and soil erosion in a
watershed for various scenarios [32]. For this reason, SWAT has been applied in many water resources
management studies around the world. Furthermore, SWAT-Calibration and Uncertainty Programs
(SWAT-CUP) makes it easy for SWAT users to complement the model to compensate for main outlet
from the watershed.

They gave a guideline (baseflow filter program) to analyze baseflow from the site (https://swat.
tamu.edu/software/baseflow-filter-program) while mentioning that groundwater (gw) files in SWAT
are needed to calculate the alpha factor that is estimated through Bflow in order to improve prediction
of baseflow. Its search algorithm is adopted from Arnold and Allen [22]. Because groundwater (gw)
files in SWAT provide constant values of the alpha factor, it is necessary to calculate the baseflow alpha
factor, reflecting the measured streamflow data of the watershed. Use of Bflow with the SWAT model
can provide results that are significantly improved due to the fact that the ratio of surface runoff to
baseflow is improved. The Bflow program determines the runoff/baseflow fraction in streamflow [16].

The SWAT model, however, contains many parameters, and it does not always take into account
the physical characteristics of each hydrological element in estimating the parameters. Further, there is
uncertainty in calibrating the model with a combination of many parameters. In other words, due to
the limitations of the statistics used for streamflow calibration, SWAT calibration is often highly biased
toward high flow, and therefore does not correctly reflect the recession characteristics. For this reason,
the method that is proposed by Arnold and Allen [22] can cause errors in recession curve simulation
and baseflow estimation.

Accordingly, the objective of this study is to compare the method proposed by Arnold and
Allen (Scenario I) with a new approach proposed here. First, to improve the recession prediction, the
alpha factor is recalibrated and applied in SWAT (Scenario II). Second, the baseflow, accounting for
the recession characteristics, is analyzed by using simulated results of streamflow (Scenario I and
Scenario II).

2. Materials and Methods

2.1. Study Area and Data

In this study, five study watersheds were selected, as shown in Table 1. The five watersheds
have different conditions, such as land use, soil type, and watershed slope that might cause different
recession characteristics. In order to evaluate baseflow prediction in SWAT, the alpha factor was
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calculated from the measured streamflow using Bflow and compared with the recalculated alpha factor
from the simulated streamflow (calibrated) in SWAT for the five watersheds (Figure 1).

Table 1. Characteristics of five study watersheds in South Korea.

Study
Watershed

Periods Area
(km2)

Precipitation
(mm/year)

Average Slope
(%)

Highest Elevation
(m)

Seoul 2008~2011 99.2 1751 9 600
Musim 2014~2016 156.7 869 11 595

Osu 2013~2016 392.0 1268 13 900
Andong 2010~2013 649.8 1237 27 1560

Pyeongchang 2007~2010 696.0 1310 21 1560

Figure 1. Locations of the five study watersheds (Seoul, Musim, Osu, Pyeongchang, Andong) in South
Korea. Symbols and letters denote the locations of streamflow measurement stations.

In order to consider and analyze the characteristics of recession, we investigated the streamflow
stations that were included in the Water Management Information System (WAMIS) due to availability
of continuous daily streamflow data, which is required for baseflow separation using the Bflow
program. However, there is limited information on streamflow data provided by WAMIS in each study
watershed, and the study period was different in each study watershed, as shown in Table 1.

In this study, the topographic data, which is input data for the SWAT model, were constructed
using the Digital Elevation Model (DEM) of 30 m × 30 m resolution provided by the National
Geographic Information Institute (http://www.ngii.go.kr/kor/main/main.do?rbsIdx=1), Republic of
Korea. The reconnaissance soil map (1:25,000) provided by the Rural Development Administration
(RDA) (http://soil.rda.go.kr/soil/index.jsp), Republic of Korea, was used as a base soil map. Climatic
data used in the SWAT model are daily radiation (MJ/m), daily precipitation (mm), daily mean relative
humidity (%), daily mean wind velocity (m/s), and daily maximum/minimum temperature (◦C) from
the KMA (Korea Meteorological Administration) (https://data.kma.go.kr/cmmn/main.do).

The distribution of land use in the study watersheds differs as shown in Figure 2. Among the
five study watersheds, those with high forest density are located in Andong, urbanized watersheds
are located in Seoul, and those in the Osu watershed are concentrated in agricultural watersheds.

http://www.ngii.go.kr/kor/main/main.do?rbsIdx=1
http://soil.rda.go.kr/soil/index.jsp
https://data.kma.go.kr/cmmn/main.do
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Figure 2. Land use of the five study watersheds (Seoul, Musim, Osu, Pyeongchang, Andong).

2.2. Description of SWAT and SWAT-CUP

SWAT is a semi-distributed rainfall-runoff model developed by the United States Department
of Agriculture Research Service (USDA/ARS) [33,34]. The SWAT model is a continuous time model
that operates on a daily time step and was developed to predict the impact of management on water,
groundwater recharge, and sediment in large, complex watersheds. The model has physically based
part and empirically based part, uses readily available inputs, is computationally efficient, and is
able to continuously simulate long-term impacts. In particular, the model can quantitatively estimate
changes in water quality due to changes in land use, climate, and vegetation.

Typically, SWAT requires data about watershed characteristics, including soil type, slope, land
use, and meteorological data, including temperature, wind speed, precipitation, relative humidity,
and solar radiation. SWAT performs the simulation based on the HRU (hydrological response unit)
concept that uses a combination of land use, soil type, and watershed slope. The model simulates both
hydrologic responses and water quality in subbasins, HRUs, and reaches using governing equations.
For instance, the hydrologic process is simulated based on the water balance Equation (1).

SWt = SW0 + ∑t
i=1

(
Rday − Ea − Wseep − Qsur f − Qgw

)
(1)

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content (mm
H2O), t is time (days), Rday is the amount of precipitation on day i (mm H2O), Ea is the amount
of evapotranspiration on day i (mm H2O), Wseep is the amount of percolation and bypass flow exiting
the soil profile bottom on day i (mm H2O), Qsur f is the amount of surface runoff on day i (mm H2O),
and Qgw is the amount of return flow on day i (mm H2O).

The SWAT model contains many parameters related to rainfall runoff, and parameters that need to
be calibrated to improve the accuracy of the prediction. Among the many parameters that are involved
in the SWAT model, the alpha factor is the one of the most important parameters regarding the baseflow
recession coefficient [35]. Recently, in order to incorporate various calibration modules into SWAT for
automating calibration processes or uncertainty analysis, SWAT-calibration and uncertainty programs
(SWAT-CUP) were developed (Figure 3).
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Figure 3. Overview of Soil and Water Assessment Tool -Calibration and Uncertainty Programs
(SWAT-CUP) for automated calibration of SWAT [36].

SWAT-CUP includes the sequential uncertainty fitting algorithm (SUFI-2) [37], Parameter
Solution (ParaSol) [38], Generalized Likelihood Uncertainty Estimation (GLUE) [39], Particle swarm
optimization (PSO) [40], and Markov chain Monte Carlo (MCMC) [41]. Furthermore, by selecting the
appropriate calibration algorithms corresponding to their needs, users can calibrate the SWAT model
with observations at multiple outlets within a watershed. Moreover, users can manually adjust the
period of observation that is used for calibration (e.g., the period of recession or flood).

In this study, calibration was performed using the sequential uncertainty fitting algorithm (SUFI-2),
which has been used to optimize SWAT parameters in many studies [42–44].

2.3. Alpha Factor Calculation and Baseflow Estimation Using Bflow

The recession provides crucial information on the flow of the stream and is closely related to
baseflow. The SWAT model has a parameter (alpha factor) related to the recession, which represents
the characteristics of the baseflow when simulating streamflow. The calculation of the alpha factor (a)
is shown in Equation (2).

Qt = QoKt = Qoexp−at (2)

a = −lnK

Qo is the streamflow at the starting point of the recession, Qt is streamflow at time t, and K is
the recession index. In the case of the method that Arnold and Allen proposed, the alpha factor is
calculated by using Bflow, and then the alpha factor is applied to groundwater (gw) files in SWAT.
However, due to the fact that the calibration of SWAT is performed with a combination of many
parameters, which can distort the results of simulating the overall streamflow, including the peak
flow and the low flow, it is difficult for SWAT simulations to accurately reflect baseflow characteristics
following calibration.

In this study, SWAT was calibrated using two methods (Scenario I, II), as shown in Figure 4,
and the results (alpha factor and baseflow) from the two methods were compared. In order to compare
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the effectiveness of the two methods (Scenario I, II), five study watersheds (Seoul, Osu, Pyeongchang,
Musim, and Andong) with different watershed characteristics were studied. In the case of Scenario
I, the alpha factor was calculated from the measured streamflow using Bflow, and the alpha factor
was applied to the SWAT model as a fixed parameter. The remaining parameters were calibrated by
SWAT-CUP. This method has been commonly used for SWAT calibration. However, in this study,
we found that the alpha factor was underestimated when reanalyzing the alpha factor from the
simulated streamflow following calibration (refer to Section 3.1). Thus, as an alternative method,
Scenario II was suggested that could adjust the alpha factor to improve baseflow prediction accuracy.
In the case of Scenario II, the alpha factor was reanalyzed from the simulated streamflow (Scenario I)
using Bflow and compared to the original alpha factor used in Scenario I to calculate the difference.
The alpha factor was recalibrated based on the difference (recalibration ratio) and then applied in SWAT.

Figure 4. SWAT application procedure for accurate prediction of hydrograph recession.

The Bflow filter can provide multiple passes through the filter (first pass, second pass, and third
pass) allowing for users to select and use the desired number of passes to calculate the baseflow for
the streamflow [45,46]. According to Eckhardt [2], the first or second pass results are typically used
to separate baseflow using Bflow, since the baseflow contribution is relatively small for the third
pass. Ahiablame et al. [6] constructed a regression equation to estimate baseflow within the state of
Indiana for ungaged watersheds and calculated the baseflow that was used to create the equation
using measured data from the first pass of Bflow. In this study, the first pass results were used. In order
to analyze the baseflow reflecting the recession characteristics using Bflow, the baseflow was separated
from the streamflow provided by the gage station. Moreover, the baseflow index (BFI), which indicates
the contribution of baseflow in the flow, was calculated for each of the five research watersheds.

2.4. Evaluation of Streamflow and Baseflow Estimation from Scenario I and II

In this study, SWAT-CUP was used to calibrate the streamflow for the Seoul, Osu, Pyeongchang,
Musim, and Andong watersheds. The alpha factor calculated by Bflow (Scenario I) and the recalibrated
alpha factor to correctly take into account the recession (Scenario II) were used in SWAT-CUP as a fixed
parameter to calibrate other parameters. After calibration using SWAT-CUP, the calibrated parameters,
including the alpha factor were applied to SWAT to predict streamflow. The simulated streamflow
and baseflow (separated by Bflow) were evaluated by comparing with the daily measured streamflow
data for the five study watersheds. Nash-Sutcliffe efficiency coefficient (NSE) and determination
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coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and index of agreement
(d) were used for SWAT model evaluation, and NSE, R2, RMSE, MAE, and d can be calculated by using
Equations (3–7). The R2 measures the degree of collinearity between observations and simulations
(Equation (3)). The NSE is a normalized statistic that gives the relative magnitude of the residual
variance compared to the observed variance and is calculated by using Equation (4). An NSE value of
“1” indicates perfect agreement between observations and simulations.

The advantage of the modified index of agreement is that the errors and differences are given
their appropriate weighting and are not inflated by their squared values (Equation (4)). The modified
index of agreement also varies from 0 to 1 with higher values indicating a better fit of the model [47,48].
Furthermore, several error indices are commonly used in model evaluation. These include MAE, and
RMSE. These indices are valuable because they indicate error in the units (or squared units) of the
constituent of interest, which aids in analysis of the results (Equations (6) and (7)). RMSE, and MAE
values of 0 indicate a perfect fit [49]. Singh et al. [50] state that RMSE and MAE values less than half
the standard deviation of the measured data may be considered as low, and either is appropriate for
model evaluation. In this study, we compared baseflow estimates for each study watershed using NSE,
R2, RMSE, MAE, and d for comparison with the method that is proposed by Arnold and Allen.

R2 =

(
∑n

i=1
(
yobs,i − Yobs

)(
ysim,i − Ysim

))2

∑n
i=1 (yobs,i − Yobs)

2
∑n

i=1 (ysim,i − Ysim)
2 (3)

NSE = 1 −
[

∑n
i=1(yobs,i − ysim,i)

2

∑n
i=1
(
yobs,i − Yobs

)2

]
(4)

d = 1 −
[

∑n
1 (yobs,i − ysim,i)

2

∑n
1
(∣∣ysim,i − Yobs

∣∣+ ∣∣yobs,i − Yobs
∣∣)2

]
(5)

RMSE =

√
∑n

1 (ysim,i − yobs,i)
2

n
(6)

MAE =
1
n

n

∑
1

∣∣ysim,i − yobs,i
∣∣ (7)

where yobs,i is the observation, ysim,i is the simulation, Yobs is the mean of the observations, Yobs is the
mean of the simulations, and n is the total number of observations.

3. Results

3.1. Comparison of Streamflow and Alpha Factor in Scenarios I and II

In this study, the alpha factor was estimated using Bflow to consider the recession characteristics
in order to improve the accuracy in the SWAT model. The alpha factor, which is sensitive to the
recession, was used as a fixed parameter in SWAT-CUP (Scenario I, proposed by Arnold and Allen [22]).
The SWAT model was calibrated for measured streamflow in Seoul, Osu, Pyeongchang, Musim, and
Andong basins. The calibration results are shown in Table 2. For Scenario II, the RMSE and MAE have
a lower error rate than Scenario I. Also, d has more accurate results in Scenario II. The NSE were rated
“Satisfactory” in the evaluation criteria of SWAT calibration (NSE > 0.5) (Table 3) based on guidance
in Saleh et al. [51]. These NSE results show that Scenario I simulated streamflow well for the five
study watersheds.
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Table 2. Nash-Sutcliffe efficiency coefficient (NSE), determination coefficient (R2), root mean square
error (RMSE), mean absolute error (MAE), and index of agreement (d) for Scenario I and Scenario II for
streamflow for study watersheds.

Streamflow
Scenario I Scenario II

NSE R2 RMSE MAE d NSE R2 RMSE MAE d

Seoul 0.573 0.762 21.454 5.000 0.790 0.579 0.763 21.382 4.978 0.793
Musim 0.974 0.974 1.040 0.845 0.970 0.989 0.989 0.258 0.161 0.995

Osu 0.666 0.672 13.771 4.265 0.898 0.666 0.673 13.240 4.041 0.901
Andong 0.546 0.549 30.500 10.500 0.837 0.547 0.558 30.470 10.390 0.840

Pyeongchang 0.562 0.564 34.060 11.708 0.840 0.567 0.569 33.850 11.340 0.845

Table 3. Reported performance ratings for NSE statistics [51].

Method Value Performance Rating

NSE
NSE ≥ 0.65 Very good

0.54 ≤ NSE ≤ 0.65 Adequate
NSE ≥ 0.50 Satisfactory

However, the recalculated alpha factor from the predicted streamflow (Scenario I) was
underestimated due to the influence of other hydrologic parameters when the alpha factor that
was calculated from Bflow was applied to SWAT-CUP (Figure 5). In order to properly reflect the
calculated alpha factor from measured streamflow data, the alpha factor that was used in SWAT was
recalibrated based on the difference between the alpha factor and the recalculated one. As shown
in Figure 5, when calibrating using SWAT-CUP, it was necessary to recalibrate the alpha factor by
multiplying the calculated alpha factor from the measured streamflow by two or a little more (difference
or recalibration ratio) for the five study watersheds. Using this method, the recalculated alpha factors
from the predicted streamflow (Scenario II) were similar to the alpha factor derived from the measured
flow. When comparing the results of Scenario I and Scenario II, we can see that alpha factor for
Scenario II more accurately reflects the recession than the alpha factor for Scenario I (Figure 5).

Figure 5. Recalibration of alpha factor for the recession curve for five study watersheds. The values
in red represent the differences between the alpha factors calculated from measured and simulated
(calibrated) streamflow in Scenario I and the recalibration ratio applied in Scenario II. The blue color in
Scenario I is a calculated alpha value by Bflow. The blue in Scenario II is a calculated Alpha value by
Bflow after applying the recalibrated alpha to SWAT.
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3.2. Comparison of Baseflow and Recession Estimates in Scenarios I and II

The recession curves were manually extracted from the simulated streamflow in Scenarios I and
II. According to the SWAT performance rating shown in Table 3, the acceptable NSE and R2 criteria
ensuring satisfactory calibration are NSE > 0.5 and R2 > 0.5 [52–54]. As shown in Table 4, the effect of
recession in Scenario II is simulated better than in Scenario I. In particular, the Musim watershed has
the biggest difference (improvement) of NSE, RMSE, and MAE between Scenarios I and II among the
five watersheds. The reason is that the average annual precipitation is the lowest (869 mm/year) in the
Musim watershed compared to the other four study watersheds. This means that the baseflow had a
greater effect than the peak flow effect when calibrating SWAT.

Table 4. Comparison of streamflow recessions for Scenarios I and Scenarios II for study watersheds.

Recession Curve
Scenario I Scenario II

NSE R2 RMSE MAE d NSE R2 RMSE MAE d

Seoul 0.534 0.723 30.585 7.920 0.766 0.537 0.725 30.480 7.751 0.768
Musim 0.969 0.971 1.089 0.893 0.981 0.988 0.989 0.288 0.169 0.992

Osu 0.745 0.752 18.031 5.233 0.916 0.746 0.752 18.010 5.202 0.917
Andong 0.604 0.639 34.276 12.066 0.834 0.606 0.640 34.183 12.026 0.836

Pyeongchang 0.696 0.794 38.180 13.206 0.876 0.704 0.797 37.678 12.711 0.881

Figure 6 shows the observed and simulated streamflow recessions (extracted) for Scenarios I and
II as an example of comparison of the recession curves. It shows that the recession simulations were in
better agreement with the observed recessions for Scenario II when compared to Scenario I. Although
trends in the recession curves are not consistent in each study watershed, Scenario II provides more
accurate prediction for the recession curve than that of Scenario I in general.

BFI (Baseflow index) was analyzed based on measured streamflow of five study watersheds using
Bflow. The BFI represents the characteristics of aquifers in the watershed and plays an important
role in determining the characteristics of the runoff. The BFI results of five study watersheds were
calculated (Seoul 0.52; Osu 0.58; Musim 0.68; Andong 0.58; Pyeongchang 0.60). Among the five study
watersheds, Musim, where the baseflow rate is highest when compared to the direct runoff rate, has
the largest value of BFI, while Seoul has the smallest value of BFI. The land use in Seoul is impervious
due to urbanization relative to other watersheds. This means that the direct runoff ratio is larger than
other watersheds. Table 5 shows the results obtained by separating the baseflow from streamflow
using Bflow. Since the influence of low flow rate is bigger than that of the high flow rate, the result of
Scenario II is more accurate than that of Scenario I on prediction of baseflow. The highest values of
NSE, R2, RMSE, MAE, and d were found for the Musim watershed for the baseflow results. In addition,
the difference between Scenarios I and II of the Musim watershed was great. This is because the Musim
watershed has less influence from precipitation than other watersheds as it has the lowest precipitation.
This indicates that the influence of low flow is greater than the influence of specific high flow, such as
during the flood season, and the low flow is sensitive to the baseflow.
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Figure 6. Observed and simulated streamflow recessions for five study watersheds.

Table 5. Comparison of baseflow results for Scenarios I and II after separation of baseflow from
SWAT-modeled streamflow using Bflow.

Baseflow
Scenario I Scenario II

NSE R2 RMSE MAE d NSE R2 RMSE MAE d

Seoul 0.479 0.853 5.449 2.397 0.738 0.503 0.853 5.324 2.387 0.758
Musim 0.902 0.932 0.512 0.384 0.961 0.982 0.987 0.156 0.143 0.996

Osu 0.509 0.511 3.159 2.134 0.824 0.586 0.589 2.900 2.051 0.863
Andong 0.622 0.689 6.057 4.657 0.904 0.627 0.691 6.022 4.067 0.906

Pyeongchang 0.788 0.791 6.473 4.524 0.934 0.810 0.811 6.134 4.179 0.946

However, in the Andong area, the difference between NSE and R2 for Scenario I and Scenario II
was small likely because the average slope of the Andong area is steepest at 27 (%), and it has the
highest elevation, 1560 (m). Therefore, direct runoff is expected to have greater influence than that
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of baseflow. The baseflow is sensitive to time and space variations, and it is influenced by various
conditions such as variability in weather or geography.

Thus, our findings show that if SWAT is calibrated for recession periods and baseflow with
the alpha factor (Scenario II), streamflow recession, and baseflow were more accurately predicted.
These findings indicate that the SWAT model with this new approach for baseflow estimation will be
useful for planning of sustainable groundwater management.

4. Conclusions

In this study, we calculated alpha factors reflecting the characteristics of five study watersheds
and analyzed baseflow when comparing the method proposed by Arnold and Allen (Scenario I) with
a new approach proposed here (Scenario II). The method proposed by Arnold and Allen was used
to calculate the alpha factor when considering the recession characteristics and applied in the SWAT
model as Scenario I, and then the alpha factor was recalibrated to reflect recessions more precisely in
SWAT in Scenario II. From the results, we found that the method that is proposed by Arnold and Allen
could not more precisely reflect the alpha factor considering recession characteristics in SWAT. If the
alpha factor was applied to the SWAT-CUP calibration after multiplying the calculated alpha factor
from the measured streamflow data by approximately 2.0 (recalibration ratio) proposed in Scenario
II of this study, baseflow prediction in SWAT could be improved taking account of the recession
characteristics correctly. Although the differences between the results (NSE, R2, RMSE, MAE, d) of
Scenario I and Scenario II were small, the Scenario II method more accurately reflected the recession
characteristics than the Scenario I method.

The baseflow analysis approach proposed in this study that considers recession characteristics
can be used to validate and evaluate baseflow in other study watersheds. Since considering recession
characteristics is important to baseflow analysis, the approach developed can be used not only in this
study, but also in other studies regarding baseflow. These outputs will pave the way and contribute to
the water management of watersheds in an efficient manner and help us to predict upstream runoff
phenomenon with more accuracy.

Due to the lack of streamflow observation data in the study watersheds, only one alpha factor
was applied to the entire watershed. Therefore, future studies should be conducted when considering
the influence of the baseflow of each sub basin.
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